

Application

Model HBR-150 is a heavy duty round industrial backdraft damper with a flanged style frame. It allows air to be drawn into a draft relief application or to prevent backflow in an HVAC or a process application.

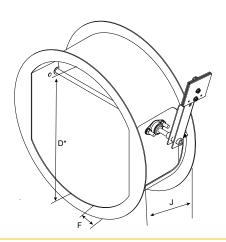
Ratings

Velocity

Up to 4000 fpm (20.3 m/s)

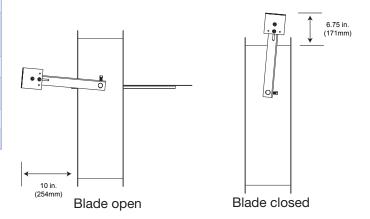
Temperature

Up to 250°F (121°C)


Pressure

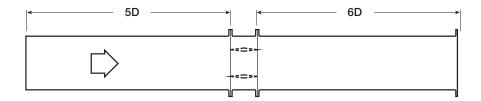
Up to 6 in. wg (1.5 kPa) - differential pressure

Construction


	Standard	Optional		
Frame Material	Painted	304SS or 316SS		
Frame Type	Flanged channel	-		
Blade Material	Painted	304SS or 316SS		
Blade Seals	None	EPDM or Silicone		
Blade Type	Round			
Axle Bearing	Stainless steel sleeve	External bronze sleeve, External relubricable ball		
Axle Material	Plated steel	303SS or 316SS		
Airflow	Horizontal	Vertical up, Vertical down		
Paint Finishes	Hi Pro Polyester	Mill finish (SS only)		
Mounting Holes	None	Parallel, Straddle		

Diameter	Minimum Size	Maximum Size	
Inches	6	36	
mm	154	914	

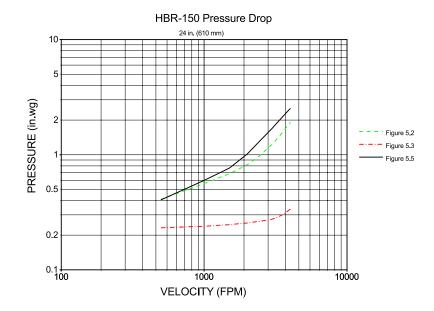
Advise air flow direction & counterbalance weight location when ordering



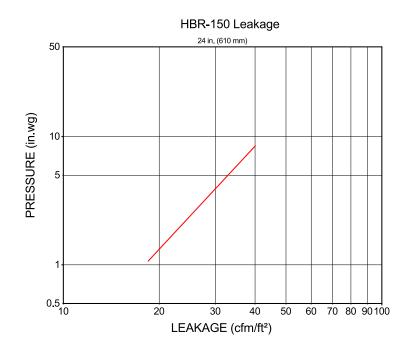
Diameter <i>D</i>		Frame	Frame &	Flange	Axle	Blade
Inches (mm)		Depth <i>J</i>	Flange	Width <i>F</i>	Diameter	Thickness
Above	Through	Inches (mm)	Gauge (mm)	Inches (mm)	Inches (mm)	Gauge (mm)
6	12	6	12	1.25	0.5	12
(154)	(305)	(152)	(2.7)	(32)	(13)	(2.7)
12	20	8	12	1.5	0.75	12
(305)	(508)	(203)	(2.7)	(32)	(19)	(2.7)
20	24	8	12	1.5	0.75	10*
(508)	(610)	(203)	(2.7)	(32)	(19)	(3.5)
24	36	8	10	2	0.75	10*
(610)	(914)	(203)	(3.5)	(51)	(19)	(3.5)
* with reinforcements						

HBR-150 March 2023

AMCA Test Figure 5.3

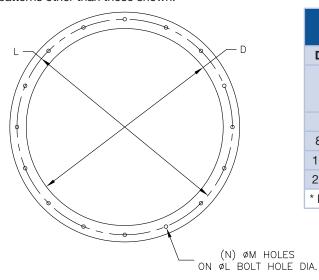

Figure 5.3 illustrates a fully ducted damper. This configuration has low pressure drop because entrance and exit losses are minimized by straight duct runs upstream and downstream of the damper.

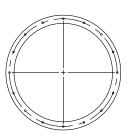
Pressure Drop Data

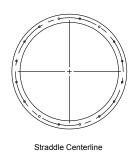

This pressure drop data was conducted in accordance with AMCA Standard 500-D using Test Figure 5.3. All data has been corrected to represent standard air at a density of 0.075 lb./ft³ (1.2 kg/m³).

Actual pressure drop found in any HVAC system is a combination of many factors. This pressure drop information along with an analysis of other system influences should be used to estimate actual pressure losses for a damper installed in a given HVAC system.

Leakage Data


Damper leakage (with blade fully closed) varies based on the type of blade stops and low leakage seals applied. Model HBR-150 is available with no seals. Leakage testing was conducted in accordance with AMCA Standard 500-D and is expressed as cfm/ft² of damper face area. All data has been corrected to represent standard air at a density of 0.075 lb/ft³ (1.2 kg/m³).


HBR-150 March 2023


Mounting Holes

The recommended bolt hole pattern is shown in the table below. Customer must specify bolt holes that are parallel to the axle centerline or that straddle the axle centerline as shown in the diagrams below. The factory can also provide bolt hole sizes and patterns other than those shown.

Recommended Bolt Hole Pattern (Bolt Holes Parallel to Axle Centerline)							
Diameter Inches (mm)			Mounting	Bolt	Dograda		
Above	Through	Number of Holes	Hole Diameter in. (mm) N	Circle Diameter L	Degrees Between Holes		
4 (102)	8 (203)	4	3/8 (9.5)	*	90		
8.001 (203)	18 (457)	8	⁷ / ₁₆ (11)	*	45		
18.001 (457)	24 (610)	12	⁷ ∕₁6 (11)	*	30		
24.001 (610)	36 (914)	16	⁷ ∕₁6 (11)	*	22 ½		
* Bolt Circle Diameter = Damper Diameter + Flange Height + 1/4 in. (6mm)							

Document Links

On Centerline

Installation Instructions

Heavy Duty/Industrial Damper Catalog

Heavy Duty and Industrial Product Selection Guide

Damper Interactive Selection Guide

Warranty

