

Application

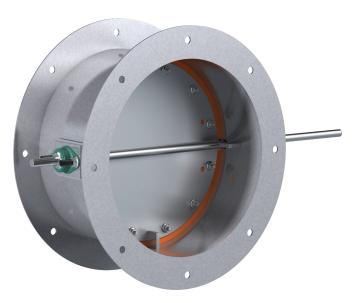
Model HCDR-351 is a heavy duty round industrial isolation damper with a flanged style frame. It is designed to provide tight shutoff with very low leakage in HVAC or industrial process control systems.

Ratings

Pressure

Up to 20 in. wg (5 kPa) pressure differential

Velocity


Up to 6,500 fpm (33 m/s)

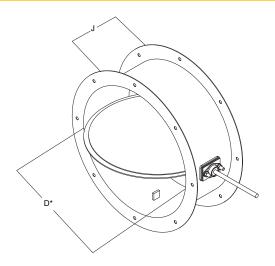
Temperature

-40°F to 400°F (-40°C to 204°C)

Construction

	Standard	Optional		
Frame Material	Painted Steel	304SS, 316SS		
Frame Type	Flanged Channel			
Blade Material	Painted Steel	304SS, 316SS		
Blade Seals	Silicone	EPDM		
Blade Type	Round Butterfly			
Axle Bearing	External Bronze	External Ball, Outboard Bronze, Outboard Ball		
Axle Material	Plated Steel	303SS, 316SS		
Axle Seals	O-ring	Double Gland		
Paint Finishes	Hi Pro Polyester	Hi Temperature Flame Control, Hi Temperature Silver, Industrial Epoxy, None		

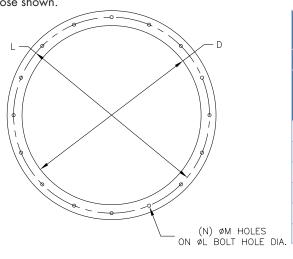
Size is actual inside dimension.

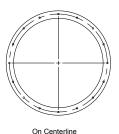

Size Limitations

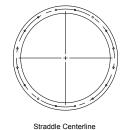
Diameter	Minimum Size	Maximum Size		
Inches	4	48		
mm	102	1219		

Features

- Wide mounting flanges can be ordered with bolt holes, customized to match your requirements.
- Wide range of actuators available.

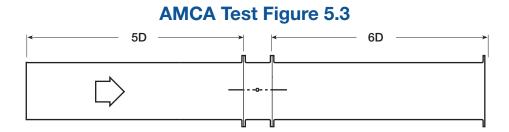

HCDR-351 January 2023


Diameter D Inches (mm)		Frame Depth J	Frame & Flange	Flange Width F	Axle Diameter	Blade Thickness
Above	Through	Inches (mm)	Gauge (mm)	Inches (mm)	Inches (mm)	Gauge (mm)
5.99 (152)	12 (305)	6 (152)	12 (2.7mm)	1.5 (38)	0.5 (13)	12 (2.7)
12 (305)	24 (610)	8 (203)	10 (3.5)	1.5 (38)	0.75 (19)	10 (3.5)
24 (610)	36 (914)	8 (203)	0.188 (4.7)	2 (51)	1 (25)	10 (3.5)
36 (914)	48 (1219)	8 (203)	0.188 (4.7)	2 (51)	1.25 (31.7)	0.188 (4.7)


Bolt Holes

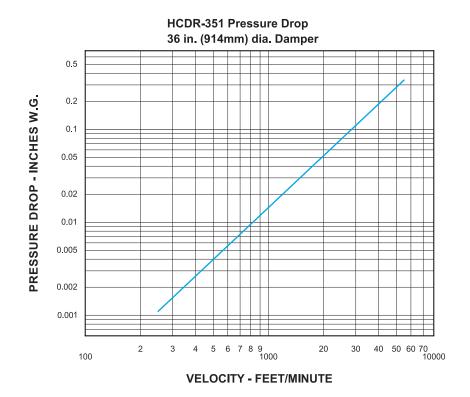
The recommended bolt hole pattern is shown in the table below. Customer must specify bolt holes that are parallel to the axle centerline or that straddle the axle centerline as shown in the diagrams below. The factory can also provide bolt hole sizes and patterns other than those shown.

Recommended Bolt Hole Pattern (Bolt Holes Parallel to Axle Centerline)						
Diameter Inches (mm)			Mounting	Bolt Circle	Downoos	
Above	Through	Number of Holes	Hole Diameter in. (mm) N	Diameter L	Degrees Between Holes	
4 (102)	8 (203)	4	3% (9.5)	*	90	
8.001 (203)	18 (457)	8	7/16 (11)	*	45	
18.001 (457)	24 (610)	12	7/16 (11)	*	30	
24.001 (610)	36 (914)	16	7/16 (11)	*	221/2	
36.001 (914)	48 (1219)	24	7/16 (11)	*	15	
* Bolt Circle Diameter = Damper Diameter + Flange Height + ¼ in. (6mm)						



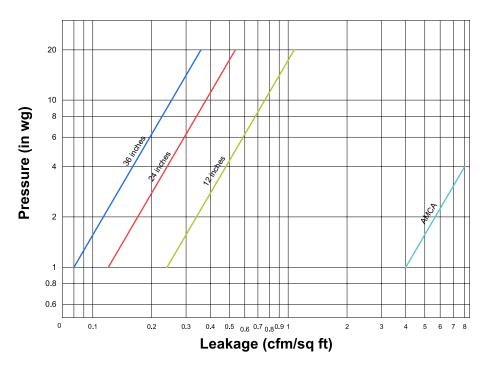
HCDR-351 January 2023

AMCA Test Figure 5.3


Figure 5.3 illustrates a fully ducted damper. This configuration has low pressure drop because entrance and exit losses are minimized by straight duct runs upstream and downstream of the damper.

Pressure Drop Data

This pressure drop data was conducted in accordance with AMCA Standard 500-D using Test Figure 5.3. All data has been corrected to represent standard air at a density of 0.075 lb/ft^3 (1.2 kg/m^3).


Actual pressure drop found in any HVAC system is a combination of many factors. This pressure drop information along with an analysis of other system influences should be used to estimate actual pressure losses for a damper installed in a given HVAC system.

HCDR-351 January 2023

Leakage Data

HCDR-351's tight shutoff design provides very low leakage, which is tested to be better than 0.029 CFM per inch of perimeter requirements. The graph below shows the leakage value for a range of sizes tested in CFM per square foot terms.

Document Links

Installation Instructions

Heavy Duty/Industrial Damper Catalog

Heavy Duty and Industrial Product Selection Guide

Damper Interactive Selection Guide

Specifications

Warranty

