

Application

Models HTOD-330 and HTOD-331 are heavy duty backdraft damper with double flanged channel frame and double thickness fabricated airfoil blades. The HTOD damper series are designed to protect against tornadoes and instantaneous pressure changes. External clevis type linkage and external mount ball bearings are standard.

Model HTOD-330 will close in the same direction as normal flow and HTOD-331 will close in the opposite direction as normal flow.

Damper Ratings

Velocity

Up to 6400 fpm (32.5 m/s)

Pressure

Up to 83 in. wg (20.7 kPa) (3 psi) - pressure differential

Temperature

-40°F to 250°F (-40°C to 121°C)

Pressure Rise or Decrease

3 psi

Construction

	Standard	Optional	
Frame Material	Painted Steel	304SS or 316SS	
Frame Material Thickness	¼ in. (6.3mm)	-	
Frame Type	12 in. x 3 in. (305mm x 76mm) flanged channel		
Blade Material	Galvaneal	304SS or 316SS	
Blade Type	Airfoil	-	
Blade Thickness	16 ga. (1.6mm)	-	
Axle Material	Plated steel, full length with reinforcing tube	303SS or 316SS	
Axle Size	¾ in. (19mm)	-	
Axle Bearings	External Ball	-	
Blade Seals	EPDM	Silicone	
Jamb Seals	EPDM	Silicone	
Linkage Material	Plated Steel	304SS or 316SS	
Painted Finishes	Hi Pro Polyester on damper frame; Mill galvanized on blades	Industrial Epoxy; Mill (304SS or 316SS)	
Air Flow	Horizontal	-	
Mounting Holes	None	Standard; Standard w/corner holes	

- * Actual Inside Dimension.
- ** The W dimension is ALWAYS parallel with the damper blade length.

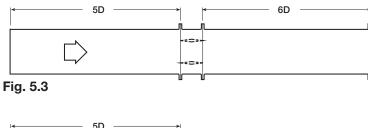
Size Limitations

WxH	Minimum Size	Maximum Size
		Single Section
Inches	12 x 12	48 x 60
mm	305 x 305	1219 x 1524

HTOD-330 & HTOD-331 March 2024

Pressure Drop Data (not valid for counter flow operation)

This pressure drop data was conducted in accordance with AMCA Standard 500-D using the three configurations shown. All data has been corrected to represent standard air at a density of .075 lb/ft³ (1.2 kg/m³).


Actual pressure drop found in any HVAC system is a combination of many factors. This pressure drop information along with an analysis of other system influences should be used to estimate actual pressure losses for a damper installed in a given HVAC system.

AMCA Test Figures

Figure 5.3 illustrates a fully ducted damper. This configuration has the lowest pressure drop of the three test configurations because the entrance and exit losses are minimized by straight duct runs upstream and downstream of the damper.

Figure 5.2 illustrates a ducted damper exhausting air into an open area. This configuration has a lower pressure drop than Figure 5.5 because the entrance losses are minimized by a straight duct run upstream of the damper.

Figure 5.5 illustrates a plenum mounted damper. This configuration has the highest pressure drop because of the high entrance and exit losses due to the sudden changes of area in the system.

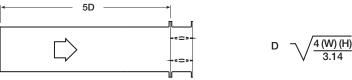
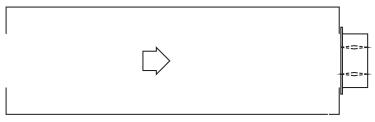
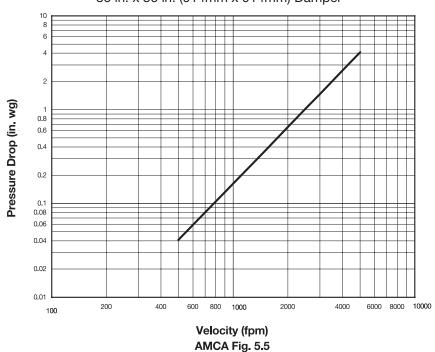
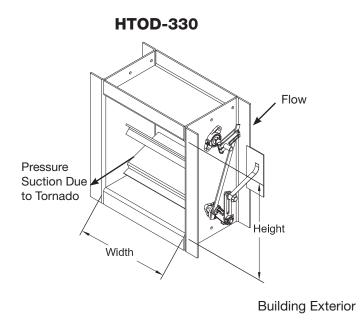
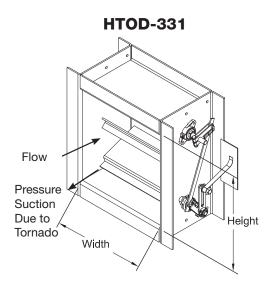


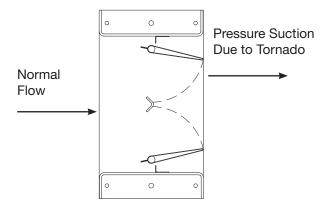
Fig. 5.2

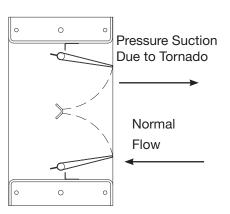

Fig. 5.5


Pressure Drop

36 in. x 36 in. (914mm x 914mm) Damper



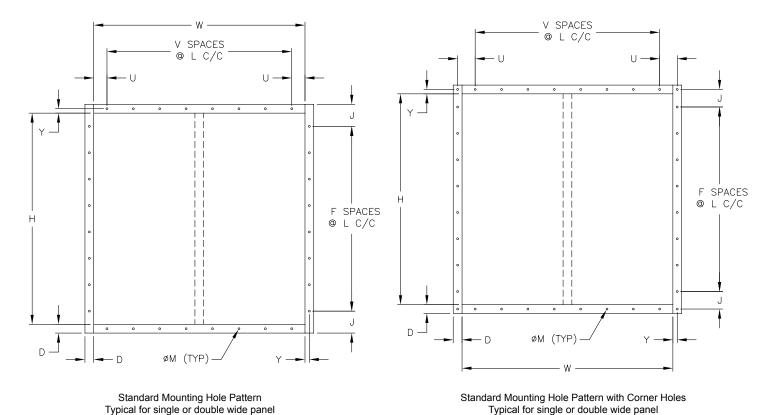
HTOD-330 & HTOD-331 March 2024



Building Exterior

Model HTOD-330

This model closes in the same direction as normal flow.


Model HTOD-331

This model closes in the opposite direction as normal flow.

HTOD-330 & HTOD-331 March 2024

Mounting Holes

Bolt holes are available as an option. The standard pattern is 7/16 in. (11mm) diameter holes (M dimension) spaced 6 in. (152mm) on center (L dimension). Custom bolt hole patterns are available. Contact factory for the limitations.

Links

SELECTION GUIDE

